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Abstract
Ultra-discrete versions of the discrete Painlevé equations are well known.
However, evidence for their integrability has so far been restricted. In this
letter, we show that their Lax pairs can be constructed and, furthermore, that
compatibility conditions of the result yield the ultra-discrete Painlevé equation.
For conciseness, we restrict our attention to a new d-PIII.

PACS numbers: 02.30.Ks, 02.30.Gp, 45.30.+s
Mathematics Subject Classification: 39A13, 33E17, 37B15

1. Introduction

The discrete Painlevé equations are integrable discrete versions of the classical Painlevé
equations that share many of the same properties [2, 3, 7]. We may apply what is known as
the ultra-discretization method as shown in [10] to get versions of these equations [8] that are
of interest because they can be interpreted as cellular automata. The method is believed to
yield integrable equations. In this letter, we show for the first time how to construct Lax pairs
for these automata.

For each variable (or parameter) v in a given equation, the ultra-discretization method
requires that we introduce a new variable V defined by v = e

V
ε . (Note that this places

constraints on the variables involved.) The most important step is to then take the limit
ε → 0+ of the equation using the identity

lim
ε→0+

ε log

(
n∑

i=1

e
Ai
ε

)
= max(Ai; i = 1, . . . , n, 0). (1.1)

In this letter, we examine the ultra-discrete version of the equation

yn+1yn−1 = αqn + y2
n

1 + αqny2
n

(1.2)
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where α = (q − 1)2/q and yn = y(qn). This is a discrete version of the third Painlevé
equation and arises as the compatibility condition of a system of 2 × 2 linear problems (2.1)
and (2.2) given in section 2. We chose to restrict our attention to this example because its Lax
pair is simpler than those that have been given previously for other discrete versions of the
third Painlevé equation (see, e.g., the 4 × 4 Lax pair given in section 5.2.5 of [3]).

To find the ultra-discrete version of equation (1.2), we introduce the ultra-discrete variables
A,Q and Yn given by

α = e
A
ε , q = e

Q

ε , yn = e
Yn
ε .

By taking the limit as ε → 0+, we obtain the ultra-discrete equation u-PIII

Yn+1 + Yn−1 = max(2Yn,A + nQ) − max(0, A + nQ + 2Yn). (1.3)

The restriction of α leads to A = max(Q,−Q) = |Q| for Q �= 0. In section 2, we deduce
the ultra-discrete Lax pair from that of equation (1.2). Most importantly, we show that the
compatibility condition of the ultra-discrete Lax pair reduces exactly to equation (1.3).

The ultra-discrete equation can be restricted to the integers or to piecewise linear maps.
Studies of ultra-discrete versions of many other equations such as the Lotka–Volterra equations
in [4] and the first three Painlevé equations in [8] have now been made. The process has also
been applied to the Modified Korteweg–de Vries equation. It was further shown that the
ultra-discrete Modified Korteweg–de Vries equation admits a Lax pair [6]. What has not been
studied is the whether ultra-discrete Painlevé equations admit Lax pairs and whether integrable
cellular automata arises as a consequence of the Lax pair associated with a Painlevé equation.
The main purpose of this letter is to demonstrate that this is in fact the case.

In section 2, we find the Lax pair of u-PIII, i.e., equation (1.3), and show how to deduce
the latter as a compatibility condition of the Lax pair. In section 3, we describe the qualitative
behaviours of the solutions of u-PIII. We end the letter with a conclusion in section 4.

2. Lax pair of u-PIII

Equation (1.2) arises as the compatibility condition of the following Lax pair:

φ(qx, k) =
(

yn+1/yn (q − 1)k2x/yn

(q − 1)xyn+1 1

)
φ(x, k) (2.1)

φ(x, qk) =
(

yn+1/yn + αxynyn+1 (q − 1)k2x/yn +
(
1 − 1

q

)
yn

(q−1)

q2 (k2yn)
−1 +

(
1 − 1

q

)
xyn

1
q
(yn/yn+1 + αx/(yn+1yn))

)
φ(x, k) (2.2)

where k = k0q
m and x = x0q

n. The first question we address in this section is what the
ultra-discrete analogue of these equations are. The second question we address is how to
consider the compatibility conditions of the resulting system.

Suppose φ(x, k) = φ(qn, qm) = (
um

n

vm
n

)
, then we may rewrite (2.1) and (2.2) as the following

component equations:

um
n+1 = yn+1

yn

um
n + (αq)1/2 q2m+nynv

m
n (2.3a)

vm
n+1 = (αq)1/2 qnyn+1u

m
n + vm

n (2.3b)

um+1
n = yn+1

yn

um
n + αqnynyn+1u

m
n +

(αq)1/2 q2m+n

yn

vm
n +

(
α

q

) 1
2

ynv
m
n (2.4a)
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vm+1
n = (αq)1/2 q−(2m+2) u

m
n

yn

+

(
α

q

) 1
2

qnynu
m
n +

vm
n

qyn+1
+ α

qn−1vm
n

yn+1yn

(2.4b)

where we have used the fact that (q − 1) = (αq)
1
2 . (We assume below that α and q are

positive real for simplicity.) A key observation in reducing this system of equations is that
(2.4a) and (2.4b) may be expressed as linear combinations of both (2.3a) and (2.3b). From
this observation we may write (2.4a) and (2.4b) as

um+1
n = um

n+1 +
√

α

q
ynv

m
n+1 (2.5a)

vm+1
n =

√
αq

q2k2yn+1
um

n+1 +
yn

qyn+1
vm

n+1. (2.5b)

These imply that we can write (2.1) and (2.2) in the form

φ(qx, k) =
(

yn+1/yn
√

αqk2x/yn√
αqxyn+1 1

)
φ(x, k) (2.6)

φ(x, qk) =

 1

√
α
q
yn

√
αq

q2k2yn+1

yn

yn+1q


 φ(qx, k). (2.7)

Now we use the set of ultra-discrete variables α = e
A
ε , q = e

Q

ε , yn = e
Yn
ε , um

n = e
Um

n
ε and

vm
n = e

V m
n
ε . By letting ε → 0+ and using identity (1.1) we arrive at the set of ultra-discrete

equations

Um
n+1 = max

(
Um

n + Yn+1 − Yn, V
m
n +

A

2
+

(
2m + n +

1

2

)
Q − Yn

)
(2.8a)

V m
n+1 = max

(
Um

n +
A

2
+

(
n +

1

2

)
Q + Yn+1, V

m
n

)
(2.8b)

Um+1
n = max

(
Um

n+1, V
m
n+1 +

A

2
− Q

2
+ Yn

)
(2.9a)

V m+1
n = max

(
Um

n+1 +
A

2
−

(
2m +

3

2

)
Q − Yn+1, V

m
n+1 + Yn − Yn+1 − Q

)
. (2.9b)

To deduce the compatibility conditions for this system of linear equations, we introduce a
notation, first used in [6]. We define the multiplication of two matrices A and B to be

[A ⊗ B]ij = max
1�k�2

(Aik + Bkj ). (2.10)

We also define the multiplication of a matrix A by a vector v by

[A ⊗ v]i = max
1�k�2

(Aik + vk). (2.11)

Thus, we may rewrite (2.8a)–(2.9b) as the pair of equations

φ((n + 1)Q,mQ) =
(

Yn+1 − Yn
A
2 +

(
2m + n + 1

2

)
Q − Yn

A
2 +

(
n + 1

2

)
Q + Yn+1 0

)
⊗ φ(nQ,mQ)

(2.12)
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φ(nQ, (m + 1)Q) =
(

0 A
2 − Q

2 + Yn
A
2 − (

2m + 3
2

)
Q − Yn+1 Yn − Yn+1 − Q

)
⊗ φ((n + 1)Q,mQ).

(2.13)

We propose that this set of ultra-discrete equations is the Lax pair for the ultra-discrete
equation ud-PIII in (1.3). For simplicity we write these equations as

φ((n + 1)Q,mQ) = L(nQ,mQ) ⊗ φ(nQ,mQ) (2.14)

φ(nQ, (m + 1)Q) = M(nQ,mQ) ⊗ φ((n + 1)Q,mQ). (2.15)

Thus, by expressing φ((n+1)Q, (m+1)Q) in two different ways in terms of φ((n+1)Q,mQ)

we see that the compatibility condition can be written as

L(nQ, (m + 1)Q) ⊗ M(nQ,mQ) = M((n + 1)Q,mQ) ⊗ L((n + 1)Q,mQ). (2.16)

By looking at [L(nQ, (m + 1)Q) ⊗ M(nQ,mQ)]11 and [M((n + 1)Q,mQ) ⊗ L((n + 1)

Q,mQ)]11 we arrive at the condition

max(Yn+1 − Yn,A + (n + 1)Q− Yn − Yn+1)= max(Yn+2 − Yn+1, A + (n + 1)Q + Yn+1 + Yn+2).

Now we use the fact that max(a + b, c + b) = b + max(a, c) to rewrite this equation as

−Yn+1 − Yn + max(2Yn+1, A + (n + 1)Q) = Yn+2 − Yn+1 + max(0, A + (n + 1)Q + 2Yn+1).

Clearly, this is equivalent to

Yn+2 + Yn = max(2Yn+1, A + (n + 1)Q) − max(0, A + (n + 1)Q + 2Yn+1)

which is equation (1.3) with n replaced by n + 1.
Similarly, by comparing the (2, 2) entries we get

max(A + nQ + Yn+1 + Yn, Yn − Yn+1 − Q)

= max(A + nQ − Yn+2 − Yn+1, Yn+1 − Yn+2 − Q) (2.17)

which may be rewritten as (1.3).
The (2, 1) entries, on the other hand, yield

max

(
A

2
+

(
n +

1

2

)
Q + Yn+1,

A

2
−

(
2m +

3

2

)
Q − Yn+1

)

= max

(
A

2
−

(
2m +

3

2

)
Q − Yn+1,

A

2
+

(
n +

1

2

)
Q + Yn+1

)
. (2.18)

This is clearly an identity.
Similarly, by comparing the (1, 2) entries we have

max

(
A

2
− Q

2
+ Yn+1,

A

2
+

(
2m + n +

3

2

)
Q − Yn+1

)

= max

(
A

2
+

(
2m + n +

3

2

)
Q − Yn+1,

A

2
− Q

2
+ Yn+1

)
(2.19)

which is another identity. Thus, the compatibility of (2.12) and (2.13) is (1.3).
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Figure 1. Solutions of (1.3) if Y0 = −1, Y1 = −1 and Q = 1 (left) and Y0 = 2, Y1 = 4 and
Q = 1 (right). Both systems tend towards some form of periodic behaviour determined by the
initial conditions.
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Figure 2. Solutions of (1.3) if Y0 = 3, Y1 = 2 and Q = 3 (left) and Y0 = 7, Y1 = 5 and Q = 3
(right). The initial conditions here have determined whether the system is convergent or divergent.

3. Solutions

When considering solutions of (1.3), we may restrict our attention to the case when Q > 0.
The solutions are then completely determined by Y0 and Y1. We will also restrict our attention
to the integers, in particular the cases where gcd(Q, Y0, Y1) = 1. Figures 1–3 show a variety
of distinct behavioural patterns observed for Yn all determined by the initial conditions and Q.

According to the figures, we have a number of different behaviours for large n. Some of
the classes of behaviour may be analysed, such as those in figures 1 and 2. To do this, we use
the following notation, Y2k+1 = Uk and Y2k = Vk . Using these variables we write (1.3) as the
following set of coupled equations:

Uk + Uk−1 = max(2Vk,A + 2kQ) − max(0, A + 2kQ + 2Vk) (3.1)

Vk + Vk−1 = max(2Uk−1, A + (2k − 1)Q) − max(0, A + (2k − 1)Q + 2Uk−1). (3.2)

From figure 1, we know that for large k, letting Uk be proportional to N+ and Vk to
be proportional to M+, from (3.1) we have that for large k, 2M+ = −2N+, and from (3.2),
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Figure 3. Solution of (1.3) if Y0 = 11, Y1 = −12 and Q = 1 (left) and Y0 = −16, Y1 = 28 and
Q = 1 (right).

2N+ = −2M+. For large negative k, by letting Uk be proportional to M− and Vk be
proportional to N−, from (3.1) we have for large negative k, 2M− = 2N− and from (3.2)
we have 2N− = 2M−. This implies that having Yn alternate between M and −M for
large n is consistent with the equations. Also for large negative n, Yn being constant is
consistent with (1.3). Similarly, letting Uk be proportional to a+k and Vk be proportional to
b+k, from (3.1) for large k we have 2ka+ = 2k(max(b+,Q) − max(0, (b+ + Q))) and from
(3.2) we have 2kb+ = 2k(max(a+,Q) − max(0, (a+ + Q))), these two statements imply that
a+ = −b+ = ±Q or a+ = −b+ where |a+| � Q. This includes the 0 solution. Similarly,
for large negative k letting Uk be proportional to a−k and Vk be proportional to b−k, from
(3.1) we have for large negative k we have that a− = min(b−,Q) − min(0,Q + b−) and
b− = min(a−,Q) − min(0,Q + a−). This admits the solution a− = b− = ±Q and also
a− = b− where |a−| � Q. This means that alternating linear growth of Yn at a rate of ±Q

2 n

for n positive is consistent with (1.3). Also linear growth at a rate of ±Q

2 n is consistent with
(1.3). Figure 3 shows other behaviour for Yn is also observed.

4. Conclusion

Lax pairs of discrete or difference equations provide strong evidence of the integrability of
such equations. They have been studied many times in the past [1]. Two more recent examples
that consider partial difference equations and cellular automata can be found in [5, 9]. Whether
the ultra-discretization of Lax pairs known for difference equations give Lax pairs for the ultra-
discrete Painlevé equations has been unclear until now. In this letter, we provide evidence for
the first time that this is the case.
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Painlevé equations J. Phys. A: Math. Gen. 30 7953–66

[9] Takhtajan L A 1996 Integrable cellular automata and AKNS hierarchy Symmetries and Integrability of Difference
Equations (Estérel, PQ, 1994) (CRM Proc. Lecture Notes vol 9) (Providence, RI: American Mathematical
Society) pp 371–5

[10] Matsukidaira J, Satsuma J, Tokihiro T and Takahashi D 1996 From soliton equations to integrable cellular
automata through a limiting procedure Phys. Rev. Lett. 76 3247


